

OpenBTS

Installation and Configuration Guide

Alexsander Loula

alex.loula@gmail.com
v0.1 (2009-05-25)

mailto:alex.loula@gmail.com

OpenBTS Installation and Configuration Guide v0.1 2009

Page | 2

1. Introduction

This guide will give you a brief overview of the OpenBTS. The main goal of the OpenBTS

project is present de GSM air interface to standard GSM handsets and uses the Asterisk PBX

software to connect calls.

At the end of this guide you will be able to make call between GSM handsets and any kind of

device compatible with Asterisk in your own network, in other words, without pay by the calls.

2. The GSM network

A GSM network is a complex system composed by several components. The last mile of this

system is the BTS (Base Transceiver Station). The BTS is responsible to transmit and receive

the RF (Radio Frequency) signals to the user terminal (cell phone, PDA, modem, etc). The BTS’s

are controlled by a BSC (Base Station Controller) that is connected to the MSC/VLR (Mobile

Switching Center/Visitor Location Register). Basically, the MSC/VLR is responsible to

authenticate the user against the database (HLR - Home Location Register, AuC -

Authentication Center).

Below is a picture of the key elements of a GSM network:

MSV/VLR

HLR

AuC

PSTN

SS7

BTS

BTS

BSC

Abis

Abis

A

Figure 1 - Key elements of a GSM network

OpenBTS Installation and Configuration Guide v0.1 2009

Page | 3

3. The OpenBTS project

The OpenBTS (Base Transceiver Station) project is an effort to construct an open-source Unix

application that uses the Universal Software Radio Peripheral (USRP) to present a GSM air

interface ("Um") to standard GSM handsets and uses the Asterisk software PBX to connect

calls.

The OpenBTS uses the USRP hardware to receive and transmit the GSM signaling. This is done

by using the GNU Radio framework. The Asterisk is used to interface the GSM calls between

the cellular phones under the OpenBTS network. Any other device that can be connected to

the Asterisk can be also used.

Internet

USRP

RFX900

/1800

RFX900

/1800

GNU Radio OpenBTS Asterisk

Hardware Software

Figure 2 - System overview

The GNU Radio is a free software development toolkit that provides the signal processing

runtime and processing blocks to implement software radios using readily-available, low-cost

external RF hardware (in this case the USRP).

The USRP (Universal Software Radio Peripheral) is a hardware designed by Ettus Research to

allow general purpose computers to function as high bandwidth software radios. In essence, it

serves as a digital baseband and IF section of a radio communication system. There are several

daughterboard’s that can be used with the USRP covering from DC to 5.9 GHz. In our case we

can use the RFX900, to cover the GSM 850 and 900 bands, or the RFX1800, to cover the GSM

1800 and 1900 bands.

Daughterboard RFX900 RFX 1800

Frequency Range 750 to 1050 MHz 1.5 to 2.1 GHz

Transmit Power 200mW (23dBm) 100mW (20dBm)

OpenBTS Installation and Configuration Guide v0.1 2009

Page | 4

4. Requirements

This guide will cover the installation on a GNU/Linux machine. It’s highly recommended to

follow the software and hardware requirements covered on this guide.

Hardware:

 01 - Computer (Core 2 Duo 2.0 GHz, 2GB RAM, USB port);

 01 - USRP-PKG (USRP Package, includes Motherboard, Enclosure, 2 RF Cables, USB

Cable, Power Supply, and Hardware Package – USD 700);

 02 - RFX900 for GSM 850/900 (800-1000MHz Transceiver, 200 mW output – USD 275

each);

 02 - RFX1800 for GSM 1800/1900 (1.5-2.1 GHz Transceiver, 100 mW output – USD 275

each);

 02 - VERT900 (824-960 MHz, 1710-1990 MHz Quad-band Cellular/PCS and ISM Band

Vertical Antenna, 3dBi Gain, 9 Inches, Ideal for RFX900 and RFX1800).

 01 - Unlocked cellular phone;

 01 - SIM Card (preferred for those with possibility to edit network list).

All hardware items except the computer, cell phone and SIM Card can be found directly from

Ettus Research.

Software:

 GNU/Linux - Ubuntu 8.04 - 32 bits;

 OpenBTS 2.3;

 GNURadio 3.1.3;

 C++ Boost 1.37.

OpenBTS Installation and Configuration Guide v0.1 2009

Page | 5

5. GNU Radio installation

a. Installing the dependencies:

sudo apt-get update

sudo apt-get -y install swig g++ automake1.9 libtool python-dev \

libcppunit-dev sdcc libusb-dev libasound2-dev libsdl1.2-dev \

python-wxgtk2.8 subversion guile-1.8-dev libqt4-dev \

ccache python-opengl libgsl0-dev python-cheetah python-lxml \

libqwt5-qt4-dev libqwtplot3d-qt4-dev qt4-dev-tools \

fftw3-dev doxygen python-numpy-ext

b. Getting and installing boost libraries:

wget http://kent.dl.sourceforge.net/sourceforge/boost/boost_1_37_0.tar.gz

tar xvzf boost_1_37_0.tar.gz

cd boost_1_37_0

BOOST_PREFIX=/opt/boost_1_37_0

./configure --prefix=$BOOST_PREFIX --with-

libraries=thread,date_time,program_options

make

sudo make install

c. Getting and installing GNURadio:

cd

wget ftp://ftp.gnu.org/gnu/gnuradio/gnuradio-3.1.3.tar.gz

tar xvzf gnuradio-3.1.3.tar.gz

cd gnuradio-3.1.3

./configure --with-boost-include-dir=$BOOST_PREFIX/include/boost-1_37/

make

sudo make install

sudo ldconfig

d. Adding user permissions to work with the USRP:

sudo addgroup usrp

sudo addgroup <YOUR_USER> usrp

echo 'ACTION=="add", BUS=="usb", SYSFS{idVendor}=="fffe",

SYSFS{idProduct}=="0002", GROUP:="usrp", MODE:="0660"' > tmpfile

sudo chown root.root tmpfile

sudo mv tmpfile /etc/udev/rules.d/10-usrp.rules

e. Testing the USRP:

- Restart the computer (it should work without it, but even restarting the udev service, the

USRP worked with user privileges only by restarting the machine):

sudo reboot

- Connect the USRP to the USB port

cd /usr/local/share/gnuradio/examples/usrp/

./usrp_benchmark_usb.py

Testing 2MB/sec... usb_throughput = 2M

ntotal = 1000000

nright = 998435

runlength = 998435

OpenBTS Installation and Configuration Guide v0.1 2009

Page | 6

delta = 1565

OK

Testing 4MB/sec... usb_throughput = 4M

ntotal = 2000000

nright = 1998041

runlength = 1998041

delta = 1959

OK

Testing 8MB/sec... usb_throughput = 8M

ntotal = 4000000

nright = 3999272

runlength = 3999272

delta = 728

OK

Testing 16MB/sec... usb_throughput = 16M

ntotal = 8000000

nright = 7992153

runlength = 7992153

delta = 7847

OK

Testing 32MB/sec... usb_throughput = 32M

ntotal = 16000000

nright = 15986239

runlength = 15986239

delta = 13761

OK

Max USB/USRP throughput = 32MB/sec

- Check if the maximum throughput between USB and USRP is 32MB/sec.

6. OpenBTS installation and settings

a. Installing the dependencies:

cd

sudo apt-get install asterisk libosip2-dev libortp7-*

b. Getting the source code:

sftp openbts@kestrelsp.com

password: “wd9xcv!”

sftp> get openbts-2.3JeanLafitteOE.tar.gz

Fetching /Users/openbts/openbts-2.3JeanLafitteOE.tar.gz to openbts-

2.3JeanLafitteOE.tar.gz

exit

c. Installing:

tar xvzf openbts-2.3JeanLafitteOE.tar.gz

mv openbts-2.3JeanLafitte openbts-2.3

cd openbts-2.3

export LIBS=-lpthread

./configure

make

sudo make install

OpenBTS Installation and Configuration Guide v0.1 2009

Page | 7

d. Configuring the settings:

This is a very important step. After getting everything compiled, it’s time to configure the

OpenBTS. Open the apps/OpenBTS.config with you preferred editor:

- The GSM.MCC (Mobile Country Code) can be set according to your country. In my case is

724 (Brazil). A complete table with these codes can be found here:

http://en.wikipedia.org/wiki/Mobile_country_code

- The GSM.MNC (Mobile Network Code) must be any code between 0 and 99 since it’s not

used by a local operator. A good way to check it is by scanning the network with the phone

and checks the operator’s code. Normally it’ll be showed in the MCC-MNC format (e.g.

724-05). This means that the country is Brazil and network code is 05.

- The GSM.Band defines the frequency band that the OpenBTS will operate. The best is to

use a band not allocated in your region, but sometimes this is not possible. If it’s your case,

you’ll need to check using a Spectrum Analyzer, what is the band has a free space. This link

shows the frequency and channel allocation by the GSM bands (NOTE: Downlink is the

frequency that the BTS transmits, so that’s the one’s we need to care about):

http://en.wikipedia.org/wiki/GSM_frequency_ranges

- Since this is a low cost project, it’s very probable that you won’t have a Spectrum Analyzer

that is an expensive test instrument. The good news is that GNURadio has a simple one’s,

which can be used to check the band and channel allocations. To use it, go to GNURadio

examples folder and execute the usrp_wfm_rcv_pll.py:

cd /usr/local/share/gnuradio/examples/usrp

./usrp_wfm_rcv_pll.py

Figure 3 - USRP WFM RX analyzing between 937.85 and 938.15 MHz

http://en.wikipedia.org/wiki/Mobile_country_code
http://en.wikipedia.org/wiki/GSM_frequency_ranges

OpenBTS Installation and Configuration Guide v0.1 2009

Page | 8

- By changing the frequency (“Freq:”), we can scan the GSM bands to check what is the best

place to operate with the OpenBTS. The figure above shows that the frequencies near of

938 MHz are being used. The “Peak Hold” option can be useful here.

- On the screen bellow we can see that the frequencies near of 937 MHz are not used.

Figure 4 - USRP WFM RX analyzing between 936.85 and 937.15 MHz

- Using Spectrum Analyzer test equipment, we can see the full range of GSM 900 band, from

925 to 960 MHz downlink spectrum. The spikes are the frequencies (carriers) used by the

operator:

Figure 5 - GSM 900 band downlink spectrum

OpenBTS Installation and Configuration Guide v0.1 2009

Page | 9

- Now we can set the GSM.ARFCN (Absolute RF Channel). This WEB application generates

the ARFCN tables for the 4 GSM bands:

http://www.aubraux.com/design/arfcn-calculator.php

- For the GSM 900, that is the chosen band, the table is the following:

ARFCN Frequency (MHz) ARFCN Frequency (MHz)

1 935.2 2 935.4

3 935.6 4 935.8

5 936 6 936.2

7 936.4 8 936.6

9 936.8 10 937

11 937.2 12 937.4

13 937.6 14 937.8

- For the 937 MHz downlink frequency (BTS to the cellular phone), the ARFCN is 10.

- Below is my OpenBTS.config file (my modifications are in grey):
-
Sample OpenBTS configuration file.

Format of each line is. <key><space><value>

The key name can contain no spaces.

Everything between the first space and the end of the line becomes the

value.

Comments must start with "#" at the beginning of the line.

Blank lines are OK.

As a gerenal rule, non-valid configuration values will crash OpenBTS.

Logging parameters

The initial global logging level: ERROR, WARNING, NOTICE, INFO, DEBUG,

DEEPDEBUG

LogLevel INFO

The log file path. If not set, logging goes to stdout.

LogFileName test.out

Transceiver parameters

Transceiver interface

This TRX.IP is not really adjustable. Just leave it as 127.0.0.1.

TRX.IP 127.0.0.1

This value is hard-coded in the transcevier. Just leave it alone.

TRX.Port 5700

Path to transceiver binary

http://www.aubraux.com/design/arfcn-calculator.php

OpenBTS Installation and Configuration Guide v0.1 2009

Page | 10

TRX.Path ../Transceiver/transceiver

TRX logging.

Logging level.

TRX.LogLevel ERROR

Logging file. If not defined, logs to stdout.

TRX.LogFileName test.out

SIP, RTP, servers

Asterisk PBX

Asterisk.IP 127.0.0.1

Asterisk.Port 5060

Messaging server

Messenger.IP 127.0.0.1

Messenger.Port 5063

Local SIP/RTP ports

SIP.Port 5062

RTP.Start 16484

RTP.Range 98

Local SMS port for short code delivery.

SMSLoopback.Port 5064

Special extensions.

Routing extension for emergency calls.

PBX.Emergency 2101

SIP parameters

SIP registration period in seconds.

Ideally, this should be slightly longer than GSM.T3212.

SIP.RegistrationPeriod 3600

SIP Internal Timers. All timer values are given in millseconds.

These are from RFC-3261 Table A.

SIP Timer A, the INVITE retry period, RFC-3261 Section 17.1.1.2

SIP.Timer.A 1000

SMS parameters

OpenBTS Installation and Configuration Guide v0.1 2009

Page | 11

ISDN address of source SMSC when we fake out a source SMSC.

SMS.FakeSrcSMSC 0000

ISDN address of destination SMSC when a fake value is needed.

SMS.DefaultDestSMSC 0000

The SMS HTTP gateway.

Comment out if you don't have one.

SMS.HTTP.Gateway api.clickatell.com

IF SMS.HTTP.Gateway IS DEFINED, SMS.HTTP.AccessString MUST ALSO BE

DEFINED.

SMS.HTTP.AccessString sendmsg?user=xxxx&password=xxxx&api_id=xxxx

The "Welcome Message" is sent to uprovisioned handsets that try to

register.

Comment out if you don't want this feature.

WELCOME MESSAGE MUST BE LESS THAN 161 CHARACTERS.

SMS.WelcomeMessage Welcome to OpenBTS

SMS.WelcomeMessage Your handset attempted to register with OpenBTS.

IF SMS.WelcomeMessage IS DEFINED, SMS.WelcomeShortCode MUST ALSO BE

DEFINED.

SMS.WelcomeShortCode 0000

GSM

Network and cell identity.

Network Color Code, 0-7

GSM.NCC 0

Basesation Color Code, 0-7

GSM.BCC 0

Mobile Country Code, 3 digits.

MCC MUST BE 3 DIGITS. Prefix with 0s if needed.

GSM.MCC 724

Mobile Network Code, 2 or 3 digits.

GSM.MNC 66

Location Area Code, 0-65535

GSM.LAC 667

Cell ID, 0-65535

GSM.CI 0

Network "short name" to display on the handset.

SHORT NAME MUST BE LESS THAN 8 CHARACTERS.

GSM.ShortName OpenBTS

Assignment type for call setup.

This is defined in an enum AssignmentType in GSMCommon.h.

0=Early, 1=VeryEarly.

GSM.AssignmentType 1

Band and Frequency

Valid band values are 850, 900, 1800, 1900.

GSM.Band 900

Valid ARFCN range depends on the band.

#GSM.ARFCN 29

OpenBTS Installation and Configuration Guide v0.1 2009

Page | 12

GSM.ARFCN 10

Downlink tx power level, dB wrt full power

GSM.PowerAttenDB 0

Beacon parameters.

L1 radio link timeout advertised on BCCH.

This is the RAW parameter sent on the BCCH.

See GSM 10.5.2.3 for encoding.

Value of 15 gives 64-frame timeout, about 30 seconds on the TCH.

This should be coordinated with T3109.

GSM.RADIO_LINK_TIMEOUT 15

Attach/detach flag.

Set to 1 to use attach/detach procedure, 0 otherwise.

This will make initial registration more prompt.

It will also cause an un-regstration if the handset powers off.

GSM.ATT 1

CCCH_CONF

See GSM 10.5.2.11 for encoding.

Value of 1 means we are using a C-V beacon.

GSM.CCCH_CONF 1

Maximum RACH retransmission attempts

This is the RAW parameter sent on the BCCH.

See GSM 04.08 10.5.2.29 for encoding.

GSM.RACH.MaxRetrans 3

Parameter to spread RACH busts over time.

This is the RAW parameter sent on the BCCH.

See GSM 04.08 10.5.2.29 for encoding.

GSM.RACH.TxInteger 14

Access class flags.

This is the RAW parameter sent on the BCCH.

See GSM 04.08 10.5.2.29 for encoding.

Set to 0 to allow full access.

GSM.RACH.AC 0

GSM Timers. All timer values are given in milliseconds unless stated

otherwise.

These come from GSM 04.08 11.2.

T3212, registration timer.

Unlike most timers, this is given in MINUTES.

Actual period will be rounded down to a multiple of 6 minutes.

Any value below 6 minutes disables periodic registration.

Ideally, this should be slightly less than the SIP.RegistrationPeriod.

GSM.T3212 6

OpenBTS Installation and Configuration Guide v0.1 2009

Page | 13

7. Asterisk settings

a. Getting SIM Card IMSI (International Mobile Subscriber Identity):

- The phone registration is based on the IMSI number stored in the SIM Card. If you don’t

have this number, it´s possible to use this Python script to do it. Create a new file in your

preferred text editor and paste the script on it. Please take care of indentation, this is

important for Python.

#!/usr/bin/env python

Coded by Alexsander Loula

Email: alex.loula@gmail.com

import serial,string

def readuntilok(s):

 ol=[]

 while 1:

 c=s.read()

 if not c:

 break

 ol.append(c)

 ostring="".join(ol)

 if len(ol)>3 and ostring[-4:]=="OK\r\n":

 break

 return ostring

def cmd(s,cmd):

 s.write(cmd+"\r")

 r=readuntilok(s)

 r=r.split("\n")

 for i in range(len(r)):

 r[i]=r[i][:-1]

 return r

def cota(s,cmd):

 s.write(cmd+"\r")

 r=readuntilok(s)

 r=r.replace('"','')

 r=r.split("\n")

 for i in range(len(r)):

 r[i]=r[i][:-1]

 return r

INIT Serial Port

ser=serial.Serial('/dev/ttyACM0',115200,timeout=3)

ser.write('ATZ\r')

line=ser.read(10)

Read IMSI

imsi = cmd(ser,'AT+CIMI')[1]

imsi = imsi.split()[-1]

imsi = 'IMSI: ' + imsi[1:16]

print imsi

Close Serial Port

ser.close()

OpenBTS Installation and Configuration Guide v0.1 2009

Page | 14

- Save the file as getimsi.py;

- This script depends of the Python serial module to control the phone over serial (RS-232 or

USB) through AT commands. To install it type:

sudo apt-get install python-serial

- Make the file executable:

sudo chmod +x getimsi.py

- Connect a phone with AT commands through serial port capabilities and run the script:

./getimsi.py

- It must output something like:

IMSI: 724311320422052

- This number will be used to configure the Asterisk

b. Backup the /etc/extensions.conf and /etc/sip.conf:

cd /etc/asterisk

sudo cp extensions.conf extensions.conf_ori

sudo cp sip.conf sip.conf_ori

c. Copy ~/openbts-2.3/AsteriskConfig/extensions.conf and sip.conf to the /etc/asterisk:

sudo cp ~/openbts-2.3/AsteriskConfig/sip.conf .

sudo cp ~/openbts-2.3/AsteriskConfig/extensions.conf .

d. Edit the /etc/asterisk/extension.conf:

...

[sip-local]

; local extensions

exten => 2100,1,Macro(dialSIP,wiredPhone)

exten => 2101,1,Macro(dialSIP,softPhone)

; This is a simple mapping between extensions and IMSIs.

exten => 2102,1,Macro(dialSIP,724311320422052)

...

- The extension 2101 will be used by the soft phone and the 2102 by the cell phone

(724311320422052 is the IMSI).

e. Edit the /etc/asterisk/sip.conf:

...

[softPhone]

callerid=2101

canreinvite=no

type=friend

context=sip-external

allow=ulaw

allow=gsm

OpenBTS Installation and Configuration Guide v0.1 2009

Page | 15

host=dynamic

; This is a GSM handset entry.

; You need one for each SIM.

; The IMSI is a 15-digit code in the SIM.

; You can see it in the Control log whenever a phone tries to register.

[724311320422052] ; <- The IMSI is used as a SIP user ID.

canreinvite=no

type=friend

context=sip-external

allow=gsm

host=dynamic

...

f. Restart the Asterisk:

sudo /etc/init.d/asterisk restart

8. Testing the OpenBTS

a. Setting the phone:

- The phone settings are crucial for test OpenBTS. Firstly you need to make sure the GSM

network setting is accord to the band you have selected on OpenBTS.config file.

- An operator SIM Card comes with a preferred network list. This is also called PLMN list

(Public Land Mobile Network) that’s composed by the Mobile Country Code and the

Mobile Network Code (MCC-MNC).

- To guarantee that the phone will start scanning our network, you have to put your PLMN

as the first preferred network.

- When the phone is registered on a network it gets a TMSI (Temporary Mobile Subscriber

Identity). TMSI is randomly assigned by the VLR to every mobile in the area. It’s good to

clear the TMSI to get the first registration on the OpenBTS. A way to do it is to turn off the

phone and take off the battery.

b. Execute OpenBTS

cd ~/openbts-2.3/apps

./OpenBTS

OpenBTS, Copyright 2008, 2009 Free Software Foundation, Inc.

Contributors:

 Kestrel Signal Processing, Inc.:

 David Burgess, Harvind Samra, Raffi Sevlian, Roshan Baliga

 GNU Radio:

 Johnathan Corgan

 Incorporated GPL libraries and components:

 libosip2, liportp2

This program comes with ABSOLUTELY NO WARRANTY.

This is free software;

you are welcome to redistribute it under the terms of GPLv3.

OpenBTS Installation and Configuration Guide v0.1 2009

Page | 16

Use of this software may be subject to other legal restrictions,

including patent licsensing and radio spectrum licensing.

All users of this software are expected to comply with

applicable regulations.

1242936099.801724 3082733248:

Starting the system...

1242936100.8228 WARNING 3082733248 TRXManager.cpp:269: retrying

transceiver command after response timeout

1242936101.0380 INFO 3052067728 RadioResource.cpp:366: Pager::pageAll

paging 0 mobile(s)

1242936101.0382 INFO 3082733248 OpenBTS.cpp:199: system ready

1242936101.038262 3082733248:

Welcome to OpenBTS. Type "help" to see available commands.

OpenBTS>

- If you have access to a Spectrum Analyzer, you should see a waveform (carrier) like this:

Figure 6 - Waveform of USRP generating the GSM signal

c. Turn on your phone

- You should see something like this on the OpenBTS CLI (Command Line Interface) at the

phone registration:

OpenBTS> 1242936116.4806 INFO 3073633168 RadioResource.cpp:150:

AccessGrantResponder RA=0x18 when=0:1778916 age=24

OpenBTS Installation and Configuration Guide v0.1 2009

Page | 17

1242936116.4809 INFO 3073633168 RadioResource.cpp:191:

AccessGrantResponder sending PageMode=(0) DedicatedModeOrTBF=(TMA=0

Downlink=0 DMOrTBF=0) ChannelDescription=(typeAndOffset=SDCCH/4-1 TN=0

TSC=0 ARFCN=10) RequestReference=(RA=24 T1'=29 T2=22 T3=36)

TimingAdvance=0

1242936116.9887 INFO 3069905808 MobilityManagement.cpp:117:

LocationUpdatingController MM Location Updating Request LAI=(MCC=724

MNC=31 LAC=0x3eee) MobileIdentity=(IMSI=724311320422052)

1242936116.9911 INFO 3069905808 MobilityManagement.cpp:170:

LocationUpdatingController registration SUCCESS: IMSI=724311320422052

1242936133.4187 INFO 3073633168 RadioResource.cpp:150:

AccessGrantResponder RA=0xe7 when=0:1782585 age=24

1242936133.4189 INFO 3073633168 RadioResource.cpp:191:

AccessGrantResponder sending PageMode=(0) DedicatedModeOrTBF=(TMA=0

Downlink=0 DMOrTBF=0) ChannelDescription=(typeAndOffset=SDCCH/4-3 TN=0

TSC=0 ARFCN=10) RequestReference=(RA=231 T1'=0 T2=25 T3=33)

TimingAdvance=0

1242936133.7486 INFO 3066710928 MobilityManagement.cpp:59:

CMServiceResponder MM CM Service Request serviceType=MOC

mobileIdentity=(TMSI=0x4a15b323)

d. Testing the MT (Mobile Terminate) call

- You can use a SIP softphone to do this test. For GNU/Linux, I recommend the Twinkle. You

can install by typing:

sudo apt-get install twinkle

- Configure the Twinkle to register on Asterisk and call the cellular phone (number 2102 -

defined in Asterisk settings).

- The phone should start ringing and the OpenBTS CLI will give you a output like this:

1242936133.7487 INFO 3066710928 CallControl.cpp:556: MOC: MM CM Service

Request serviceType=MOC mobileIdentity=(TMSI=0x4a15b323)

1242936134.2190 INFO 3066710928 CallControl.cpp:615: MOC: CC Setup

TI=(0,0) CalledPartyBCDNumber=(type=unknown plan=E.164/ISDN digits=2101)

1242936134.2193 INFO 3066710928 CallControl.cpp:179: assignTCHF sending

AssignmentCommand for 0xbff5e798 on 0xbff5e9b4

1242936134.9155 INFO 3057658768 RadioResource.cpp:276:

AssignmentCompleteHandler service=MOC

1242936134.9156 INFO 3057658768 CallControl.cpp:697: MOC: transaction:

ID=1804289383 TI=(0,0) IMSI=724311320422052 to=2101 Q.931State=MOC

initiated SIPState=Starting

1242936134.9498 INFO 3057658768 CallControl.cpp:715: MOC A: wait for

Ringing or OK

1242936135.1865 INFO 3057658768 CallControl.cpp:715: MOC A: wait for

Ringing or OK

1242936135.1866 INFO 3057658768 CallControl.cpp:726: MOC A: SIP:Ringing,

send Alerting and move on

1242936135.4046 INFO 3057658768 CallControl.cpp:756: MOC: wait for SIP

OKAY

1242936136.7268 INFO 3057658768 CallControl.cpp:793: MOC: sending Connect

to handset

1242936136.9539 INFO 3057658768 CallControl.cpp:538: MOC MTC connected,

entering callManagementLoop

OpenBTS Installation and Configuration Guide v0.1 2009

Page | 18

- Answer the call on the cell phone and start the conversation.

e. Testing the MO (Mobile Originate) call

- On the cell phone call the softphone (number 2101 - defined in the Asterisk settings).

- The phone softphone should start ringing and the OpenBTS CLI will give you a output like

this:

1242936158.0970 INFO 3063249808 RadioResource.cpp:330: Pager::removeID

IMSI=724311320422052

1242936158.0970 INFO 3063249808 RadioResource.cpp:237:

PagingResponseHandler service=MTC

1242936158.0970 INFO 3063249808 CallControl.cpp:823: MTC on FACCH

transaction: ID=1804289386 TI=(1,0) IMSI=724311320422052 from=2101

Q.931State=MTC paging SIPState=Null

1242936158.0970 INFO 3063249808 CallControl.cpp:845: MTC: sending GSM

Setup to call type=national plan=E.164/ISDN digits=2101

1242936158.2269 INFO 3052067728 RadioResource.cpp:366: Pager::pageAll

paging 0 mobile(s)

1242936158.7152 INFO 3063249808 CallControl.cpp:906: MTC:: waiting for

GSM Alerting and Connect

1242936165.5375 INFO 3063249808 CallControl.cpp:921: MTC:: allocating

port and sending SIP OKAY

1242936165.5728 INFO 3063249808 CallControl.cpp:538: MOC MTC connected,

entering callManagementLoop

- Answer the call on the cell phone and start the conversation.

- You can see the OpenBTS command options by typing ‘help’ on the CLI:

OpenBTS> help

assignment [type] -- get/set assignment type (early, veryearly)

calls -- print the transaction table

exit -- exit the application.

help -- list available commands or gets help on a specific command.

lai [MCC] [MNC] [hex-LAC] -- get/set location area identity (MCC, MNC,

LAC)

load -- print the current activity loads.

loglevel [level] -- get/set the logging level, one of {ERROR, ALARM,

WARN, NOICE, INFO, DEBUG, DEEPDEBUG}.

sendsms <IMSI> <src> -- send SMS to <IMSI>, addressed from <src>, after

prompting.

setlogfile <path> -- set the logging file to <path>.

tmsis ["clear"] -- print/clear the TMSI table.

uptime -- show BTS uptime and BTS frame number.

OpenBTS Installation and Configuration Guide v0.1 2009

Page | 19

This is a screenshot from the OpenBTS, Asterisk and Twinkle on o MO call:

Figure 7 - Screenshot of OpenBTS, Asterisk and Twinkle

9. Conclusion

To bring a GSM stack to a low cost hardware is not an easy task. The OpenBTS is giving this

power for us, and as open source project, it can be used as excellent start point to learn how

the GSM system works.

OpenBTS Installation and Configuration Guide v0.1 2009

Page | 20

References

http://gnuradio.org/trac/wiki/OpenBTS

http://gnuradio.org/trac

http://en.wikipedia.org/wiki/GSM

http://www.ettus.com/

http://gnuradio.org/trac/wiki/OpenBTS
http://gnuradio.org/trac
http://en.wikipedia.org/wiki/GSM
http://www.ettus.com/

